Home
Home
Posts List
  1. Machine Learning Basics
    1. Estimate of PDF and CDF from data
    2. Kullback–Leibler Divergence

[Theory] [Deep Learning] ch3

Machine Learning Basics

Estimate of PDF and CDF from data

x(n), n=1,2,…,N are i.i.d. samples drawn from $p(x) \thicksim N(0, 1)$. The empirical PDF and CDF can be calculated as:
$$
\hat{p}(x)=\frac{1}{N}\sum_{x=1}^N \delta(x-x(n))
\\ \hat{F}(x)=\frac{1}{N}\sum_{x=1}^N u(x-x(n))
$$
u(x) is the unit step function and $\delta$(x) is Dirac function.

Kullback–Leibler Divergence

Let p(x) and q(x) be two distribution of random vector x
$$
D_{KL}(p||q) = \int p(x)ln(\frac{p(x)}{q(x)})dx = E_{x\thicksim p}\frac{p(x)}{q(x)} \overset{disc}{=} \sum_{i=1}^cln(\frac{p(x)}{q(x)})
$$
Properties:

  1. non-negative
  2. equality $D_{KL}(p||q)=0 \Leftrightarrow p(x)=q(x)$
  3. asymmetry $D_{KL}(p||q) \ne D_{KL}(p||q)$

Minimizing D_KL is equivalent to minimizing Cross Entropy
$$
H(p,q)=-\int_{-\infty}^{\infty}p(x)ln(q(x))dx
$$