Home
Home
Posts List
  1. Random Variable
    1. Definition
    2. CDF (Cumulative Distribution Function)
    3. PDF (Probability Density Function)
    4. Gaussian Distribution
    5. Bivariate CDF and PDF
    6. Marginal CDF and PDF
    7. Multivariate Gaussian
    8. Conditional CDF and PDF Given Event
    9. Conditional CDF and PDF Given PDF/CDF
    10. Independent Random Vector
    11. Expectation
    12. Moments

[Theory] [Advanced Math ISS] ch4

Random Variable

Definition

RV is a function $X=X(\xi)$ that maps any outcome $\xi$ to a real number.

CDF (Cumulative Distribution Function)

$$
F_X(x) = P(X\leq x)=P(\xi|X(\xi)\leq x)
$$

It is continuous from the right.

PDF (Probability Density Function)

$$
f_X(x) = \frac{d}{dx}F_X(x)
\\ F_X(x) = \int_{-\infty}^{x}f_X(u)du
$$

For discrete RV, PDF consists of Dirac functions:
$$
\delta(x) = \begin{cases}
0, &x\ne0
\\ \infty, &x=0
\end{cases}
$$
Properties of Dirac function:
$$
\begin{align} \int_{-\infty}^{\infty}\delta(x)dx &= 1
\\ \int_{-\infty}^{\infty}f(x)\delta(x-x_0)dx &= f(x_0)
\end{align}
$$

Gaussian Distribution

$$
X \thicksim N(\mu, \sigma^2)
\\ f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}exp\lbrace{-\frac{(x-\mu)^2}{2\sigma^2}}\rbrace
$$

Bivariate CDF and PDF

$$
F_{XY}(x,y)=P(X\leq x,Y\leq y)
\\ f_XY(x,y)= \frac{\partial^2F_{XY}(x,y)}{\partial x \partial y}
$$

“$F_{XY}(x,y)$ starts with 0, increases two-dimensionally and ends up with 1.”

“$f_{XY}(x,y)$ is a nonnegative function with volume 1.”

Marginal CDF and PDF

CDF: set unneeded variable to $\infty$ :
$$
F_X(x) = F_{XY}(x, \infty)
\\ F_Y(y) = F_{XY}(\infty, y)
$$
PDF: integrate over unneeded variable:
$$
f_X(x) = \int_{-\infty}^{\infty}F_{XY}(x,y)dy
\\ f_Y(y) = \int_{-\infty}^{\infty}F_{XY}(x,y)dx
$$

Multivariate Gaussian

$$
\boldsymbol{X} \thicksim N(\boldsymbol{\mu}, \boldsymbol{C})
\\ f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{N/2}det(C)^{1/2}}exp\lbrace{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T\boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}\rbrace
$$

if C = I:
$$
f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^{N/2}}exp\lbrace{-\frac{1}{2}|\boldsymbol{x}|^2}\rbrace
$$

Conditional CDF and PDF Given Event

CDF of X given an event B:
$$
F_X(x|B) = P(X \leq x|B)=\frac{P(X\leq x \cap B)}{P(B)}
$$
PDF:
$$
f_X(x|B) = \frac{d}{dx}F_X(x|B)
$$
They share same properties as for the conditional probability.

Law of total CDF/PDF: if
$$
B_i \cap B_j \neq \empty, \forall i \neq j
\\ \cup_{i}^{}{B_i} = \Omega
$$
then
$$
F_X(x) = \sum_i F_X(x|B_i)P(B_i)
\\ f_X(x) = \sum_i f_X(x|B_i)P(B_i)
$$
Bayes rule:
$$
F_X(x|B) = P(B|X \leq x) \frac{F_X(x)}{P(B)}
\\ f_X(x|B) = P(B|X = x) \frac{f_X(x)}{P(B)}
$$

Conditional CDF and PDF Given PDF/CDF

X and Y are two (continuous) random vector. Consider condition B is event {Y|Y<y}, then conditional CDF of X given Y:
$$
F_\boldsymbol{X}(\boldsymbol{x}|\boldsymbol{Y}<\boldsymbol{y})=P(\boldsymbol{X}<\boldsymbol{x}|\boldsymbol{Y}<\boldsymbol{y})=\frac{F_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{F_\boldsymbol{Y}(\boldsymbol{y})}
$$
PDF can be given with B = {y < Y < y + dy}, followed by dy->0:
$$
f_\boldsymbol{X}(\boldsymbol{x}|\boldsymbol{Y}=\boldsymbol{y})=\frac{f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{f_\boldsymbol{Y}(\boldsymbol{y})}
$$
And Bayes rule:
$$
f_\boldsymbol{X}(\boldsymbol{x}|\boldsymbol{Y}=\boldsymbol{y})=f_\boldsymbol{Y}(\boldsymbol{y}|\boldsymbol{X}=\boldsymbol{x})\frac{f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})}{f_\boldsymbol{Y}(\boldsymbol{y})}
$$

Independent Random Vector

X and Y are independent:
$$
F_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})=F_\boldsymbol{X}(\boldsymbol{x})F_\boldsymbol{Y}(\boldsymbol{y})
\\ f_{\boldsymbol{X},\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y})=f_\boldsymbol{X}(\boldsymbol{x})f_\boldsymbol{Y}(\boldsymbol{y})
$$
Properties:

P1: Conditional PDF is the same as unconditional ones.

P2: h(x) and g(y) also independent.
$$
f_\boldsymbol{X}(\boldsymbol{x}|\boldsymbol{y})=f_\boldsymbol{X}(\boldsymbol{x})
\\ f_{\boldsymbol{X},\boldsymbol{Y}}(h(\boldsymbol{x}),g(\boldsymbol{y}))=f_\boldsymbol{X}(h(\boldsymbol{x}))f_\boldsymbol{Y}(g(\boldsymbol{y}))
$$

Expectation

$$
E(X)= \int xF_X(x)dx
$$

Moments

$\boldsymbol{\mu}=E(\boldsymbol{X})$ : mean vector of X

$r_{ij}=E(X_iX_j)$ : correlation between $X_i$ and $X_j$

$r_{ii}=E(X_i^2)$ : 2. moment of $X_i$

$\boldsymbol{R}=E(\boldsymbol{X}\boldsymbol{X}^T)$ : correlation matrix of X

$c_{ij}=E((X_i-\mu_i)(X_j-\mu_j))$ : covariance between $X_i$ and $X_j$

$c_{ii}=E((X_i-\mu_i)^2)=\sigma_i^2$ : variance of $X_i$

$\boldsymbol{C}=E((\boldsymbol{X-\mu})(\boldsymbol{X-\mu})^T)$ : covariance matrix of X