Home
Home
Posts List
  1. Bayesian Decision Theory
    1. Probabilistic Signal Model
    2. Bayesian Theorem:
    3. Loss Matrix:
    4. Minimum Bayesian Risk (MBR):
    5. Maximum A Posteriori (MAP):
    6. Maximum Likelihood (ML)

[Theory] [Detection and Pattern Recognition] ch2

Bayesian Decision Theory

Probabilistic Signal Model

$\omega \in \lbrace \omega_1,\omega_2,…,\omega_c\rbrace$ : unknown true class.

$\underline{x} \in \mathbb{R}^d$ : feature vector

$P(\omega=\omega_i) = P(\omega_i)$ : a priori probability

$P(\underline{x}|\omega=\omega_i) = P(\underline{x}|\omega_i)$ : likelihood

$P(\underline{x},\omega=\omega_i) = P(\underline{x},\omega_i)$ : joint PDF of x and w

$P(\underline{x})$ : marginal PDF of x, called evidence

$P(\omega=\omega_i|\underline{x}) = P(\omega_i|\underline{x})$ : a posteriori probability

Bayesian Theorem:

$$
P(\omega_i|\underline{x}) = \frac{P(\underline{x}|\omega_i)P(\omega_i)}{P(\underline{x})}
$$

Loss Matrix:

$$
\underline{\underline{L}} = [l_{ij}]{c\times c} \\
l
{ij}=loss(w=i,\hat{w}=j)
$$

Of course diagonal elements are 0, means correct decision.

Minimum Bayesian Risk (MBR):

Bayesian Risk = Loss Matrix * Posterior
$$
\left[ \begin{array}{c}
R(\hat{\omega}=\omega_1|\underline{x}) \
… \
R(\hat{\omega}=\omega_c|\underline{x})
\end{array}
\right ] = \underline{\underline{L}}
\left[ \begin{array}{c}
P(\hat{\omega}=\omega_1|\underline{x}) \``
… \
P(\hat{\omega}=\omega_c|\underline{x})
\end{array}
\right ] \\
$$

Maximum A Posteriori (MAP):

Assuming 0-1 loss, MAP is special case of MBR.

Maximum Likelihood (ML)

With equal priors, ML is special case of MAP.